Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Plant Physiol Biochem ; 185: 390-400, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1895375

ABSTRACT

Tea is the most frequently consumed natural beverage across the world produced with the young leaves and shoots of the evergreen perennial plant Camellia sinensis (L.) O. Kuntze. The expanding global appeal of tea is partly attributed to its health-promoting benefits such as anti-inflammation, anti-cancer, anti-allergy, anti-hypertension, anti-obesity, and anti- SARS-CoV-2 activity. The many advantages of healthy tea intake are linked to its bioactive substances such as tea polyphenols, flavonoids (catechins), amino acids (theanine), alkaloids (caffeine), anthocyanins, proanthocyanidins, etc. that are produced through secondary metabolic pathways. Phytohormones regulate secondary metabolite biosynthesis in a variety of plants, including tea. There is a strong hormonal response in the biosynthesis of polyphenols, catechins, theanine and caffeine in tea under control and perturbed environmental conditions. In addition to the impact of preharvest plant hormone manipulation on green tea quality, changes in hormones of postharvest tea also regulate quality-related metabolites in tea. In this review, we discuss the health benefits of major tea constituents and the role of various plant hormones in improving the endogenous levels of these compounds for human health benefits. The fact that the ratio of tea polyphenols to amino acids and the concentrations of tea components are changed by environmental conditions, most notably by climate change-associated variables, the selection and usage of optimal hormone combinations may aid in sustaining tea quality, and thus can be beneficial to both consumers and producers.


Subject(s)
COVID-19 , Camellia sinensis , Catechin , Anthocyanins/metabolism , Caffeine , Camellia sinensis/metabolism , Catechin/metabolism , Humans , Plant Leaves/metabolism , Polyphenols/metabolism , SARS-CoV-2 , Tea
2.
Eur Rev Med Pharmacol Sci ; 25(21): 6741-6744, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1524862

ABSTRACT

OBJECTIVE: Coronaviruses are large, enveloped, positive-stranded RNA viruses. These viruses contain spike-like projections of glycoprotein on their surface, which appear like a crown. Millions of infections and thousands of deaths have been reported worldwide to date. Hence, the objective of the present study was to look for in silico evaluation of certain commercially available flavonoids against SARS-CoV-2 enzyme. MATERIALS AND METHODS: The in silico docking calculations were carried out using AutoDock 4.2 software. For the computational investigation, Apigenin, Catechin, Galangin, Luteolin, Naringenin were selected. An anti-viral drug Remdesivir was selected as reference drug. RESULTS: In the present study we found that Naringenin showed excellent binding score with the SARS-CoV-2 enzyme compared to the reference drug and other selected flavonoids. CONCLUSIONS: Based on the docking results, we conclude that Naringenin can be considered worthwhile to check its antiviral activity for the management of Coronavirus disease.


Subject(s)
Antiviral Agents/chemistry , Molecular Docking Simulation , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Antiviral Agents/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catechin/chemistry , Catechin/metabolism , Flavanones/chemistry , Flavanones/metabolism , Flavonoids/chemistry , Flavonoids/metabolism , Humans , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism
3.
Molecules ; 26(21)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1512511

ABSTRACT

This work describes an untargeted analytical approach for the screening, identification, and characterization of the trans-epithelial transport of green tea (Camellia sinensis) catechin extracts with in vitro inhibitory effect against the SARS-CoV-2 papain-like protease (PLpro) activity. After specific catechin extraction, a chromatographic separation obtained six fractions were carried out. The fractions were assessed in vitro against the PLpro target. Fraction 5 showed the highest inhibitory activity against the SARS-CoV-2 PLpro (IC50 of 0.125 µg mL-1). The untargeted characterization revealed that (-)-epicatechin-3-gallate (ECG) was the most abundant compound in the fraction and the primary molecule absorbed by differentiated Caco-2 cells. Results indicated that fraction 5 was approximately 10 times more active than ECG (IC50 value equal to 11.62 ± 0.47 µg mL-1) to inhibit the PLpro target. Overall, our findings highlight the synergistic effects of the various components of the crude extract compared to isolated ECG.


Subject(s)
Catechin/pharmacology , Coronavirus Papain-Like Proteases/metabolism , Tea/metabolism , Antiviral Agents/chemistry , COVID-19/metabolism , Caco-2 Cells , Camellia sinensis/metabolism , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/metabolism , Coronavirus Papain-Like Proteases/drug effects , Epithelium/drug effects , Epithelium/metabolism , Humans , Mass Spectrometry/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Tea/chemistry , Tea/physiology , COVID-19 Drug Treatment
4.
Sci Rep ; 11(1): 2043, 2021 01 21.
Article in English | MEDLINE | ID: covidwho-1042518

ABSTRACT

The recent outbreak of the coronavirus (SARS-CoV2) is an unprecedented threat to human health and society across the globe. In this context, development of suitable interventions is the need of the hour. The viral spike protein (S Protein) and the cognate host cell receptor ACE2 can be considered as effective and appropriate targets for interventions. It is evident from the present computational study, that catechin and curcumin, not only exhibit strong binding affinity to viral S Protein and host receptor ACE2 but also to their complex (receptor-binding domain (RBD) of the spike protein of SARS-CoV2 and ACE2; RBD/ACE2-complex). The binding affinity values of catechin and curcumin for the S protein, ACE2 and RBD/ACE2-complex are - 10.5 and - 7.9 kcal/mol; - 8.9 and - 7.8 kcal/mol; and - 9.1 and - 7.6 kcal/mol, respectively. Curcumin directly binds to the receptor binding domain (RBD) of viral S Protein. Molecular simulation study over a period of 100 ns further substantiates that such interaction within RBD site of S Protein occurs during 40-100 ns out of 100 ns simulation trajectory. Contrary to this, catechin binds with amino acid residues present near the RBD site of S Protein and causes fluctuation in the amino acid residues of the RBD and its near proximity. Both catechin and curcumin bind the interface of 'RBD/ACE2-complex' and intervene in causing fluctuation of the alpha helices and beta-strands of the protein complex. Protein-protein interaction studies in presence of curcumin or catechin also corroborate the above findings suggesting the efficacy of these two polyphenols in hindering the formation of S Protein-ACE2 complex. In conclusion, this computational study for the first time predicts the possibility of above two polyphenols for therapeutic strategy against SARS-CoV2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Catechin/metabolism , Curcumin/metabolism , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , COVID-19/metabolism , COVID-19/virology , Catechin/chemistry , Catechin/pharmacology , Cell Membrane/metabolism , Computational Biology/methods , Curcumin/chemistry , Curcumin/pharmacology , Humans , Molecular Docking Simulation , Protein Binding , Protein Domains , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , COVID-19 Drug Treatment
5.
Biochem Biophys Res Commun ; 591: 130-136, 2022 02 05.
Article in English | MEDLINE | ID: covidwho-1009316

ABSTRACT

The coronavirus disease (COVID-19) pandemic, resulting from human-to-human transmission of a novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), has led to a global health crisis. Given that the 3 chymotrypsin-like protease (3CLpro) of SARS-CoV-2 plays an indispensable role in viral polyprotein processing, its successful inhibition halts viral replication and thus constrains virus spread. Therefore, developing an effective SARS-CoV-2 3CLpro inhibitor to treat COVID-19 is imperative. A fluorescence resonance energy transfer (FRET)-based method was used to assess the proteolytic activity of SARS-CoV-2 3CLpro using intramolecularly quenched fluorogenic peptide substrates corresponding to the cleavage sequence of SARS-CoV-2 3CLpro. Molecular modeling with GEMDOCK was used to simulate the molecular interactions between drugs and the binding pocket of SARS-CoV-2 3CLpro. This study revealed that the Vmax of SARS-CoV-2 3CLpro was about 2-fold higher than that of SARS-CoV 3CLpro. Interestingly, the proteolytic activity of SARS-CoV-2 3CLpro is slightly more efficient than that of SARS-CoV 3CLpro. Meanwhile, natural compounds PGG and EGCG showed remarkable inhibitory activity against SARS-CoV-2 3CLpro than against SARS-CoV 3CLpro. In molecular docking, PGG and EGCG strongly interacted with the substrate binding pocket of SARS-CoV-2 3CLpro, forming hydrogen bonds with multiple residues, including the catalytic residues C145 and H41. The activities of PGG and EGCG against SARS-CoV-2 3CLpro demonstrate their inhibition of viral protease activity and highlight their therapeutic potentials for treating SARS-CoV-2 infection.


Subject(s)
Catechin/analogs & derivatives , Coronavirus 3C Proteases/antagonists & inhibitors , Hydrolyzable Tannins/pharmacology , Molecular Docking Simulation , SARS-CoV-2/drug effects , Binding Sites , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Catechin/chemistry , Catechin/metabolism , Catechin/pharmacology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Evaluation, Preclinical/methods , Humans , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/metabolism , Kinetics , Models, Molecular , Molecular Structure , Pandemics , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Binding , Protein Domains , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Virus Replication/drug effects
6.
Drug Dev Res ; 82(1): 86-96, 2021 02.
Article in English | MEDLINE | ID: covidwho-696175

ABSTRACT

SARS-CoV-2 or COVID-19 pandemic global outbreak created the most unstable situation of human health-economy. In the past two decades different parts of the word experienced smaller or bigger outbreak related to human coronaviruses. The spike glycoproteins of the COVID-19 (similar to SARS-CoV) attach to the angiotensin-converting enzyme (ACE2) and transit over a stabilized open state for the viral internalization to the host cells and propagate with great efficacy. Higher rate of mutability makes this virus unpredictable/less sensitive to the protein/nucleic acid based drugs. In this emergent situation, drug-induced destabilization of spike binding to RBD could be a good strategy. In the current study we demonstrated by bioinformatics (CASTp: computed atlas of surface topography of protein, PyMol: molecular visualization) and molecular docking (PatchDock and Autodock) experiments that tea flavonoids catechin products mainly epigallocatechin gallate or other like theaflavin gallate demonstrated higher atomic contact energy (ACE) value, binding energy, Ki value, ligand efficiency, surface area and more amino acid interactions than hydroxychloroquine (HCQ) during binding in the central channel of the spike protein. Moreover, out of three distinct binding sites (I, II and III) of spike core when HCQ binds only with site III (farthest from the nCoV-RBD of ACE2 contact), epigallocatechin gallate and theaflavin gallate bind all three sites. As sites I and II are in closer contact with open state location and viral-host contact area, these drugs might have significant effects. Taking into account the toxicity/side effects by chloroquine/HCQ, present drugs may be important. Our laboratory is working on tea flavonoids and other phytochemicals in the protection from toxicity, DNA/mitochondrial damage, inflammation and so on. The present data might be helpful for further analysis of flavonoids in this emergent pandemic situation.


Subject(s)
Biflavonoids/metabolism , Catechin/analogs & derivatives , Computational Biology/methods , Gallic Acid/analogs & derivatives , Hydroxychloroquine/metabolism , Molecular Docking Simulation/methods , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Biflavonoids/chemistry , Binding Sites/physiology , COVID-19/metabolism , Catechin/chemistry , Catechin/metabolism , Gallic Acid/chemistry , Gallic Acid/metabolism , Humans , Hydroxychloroquine/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Spike Glycoprotein, Coronavirus/chemistry , X-Ray Diffraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL